
CIRCUITS

AN10184
Connecting a keyboard to the Philips
LPC9xx microcontroller

Author: Paul Seerden
 Cristi Ionescu-Catrina

2002 Sep 14

INTEGRATED CIRCUITS

Philips
Semiconductors

ABSTRACT
This application note demonstrates how to connect a keypad matrix to
the LPC9xx microcontroller family from Philips Semiconductors.

It explains a software example which implements the keyboard interrupt
routine and it gives a schematic for connecting a keyboard to the key-
pad port of the 89LPC932.

In the end of this application note, a listing of the code is provided.

 2002 Sep 14 2

Application notePhilips Semiconductors

Connecting a keyboard to the LPC932 microcontroller AN10184

INTRODUCTION
This application note illustrates the use of a Philips
P89LPC932 microcontroller to scan a keyboard di-
rectly connected to the port pins of the micro.
Received key info is transmitted to a terminal (PC)
using an RS232 interface.

HARDWARE
The P89LPC932 has a special keypad interrupt func-
tion intended to generate an interrupt when Port 0 is
equal or unequal to a configurable pattern. This fea-
ture is useful in applications like bus address or key-
pad recognition.
The user can configure the port through SFR’s (spe-
cial function registers) for different usage. These

registers are: the Keypad Interrupt Mask Register
(KBMASK), the Keypad Pattern Register (KBPATN)
and the Keypad Interrupt Control Register (KBCON).
The first register (KBMASK) is used to define which
input pin connected to Port 0 is enabled to generate
an interrupt. This means that it is possible to enable
individual pins to generate a keyboard interrupt; all
other pins can be used for general purposes.
The KBPATN register is used to define a pattern that
will be compared to the value of the selected pins of
Port 0.
The KBCON register contains two bits: PATN_SEL
(KBCON.1) and KBIF (KBCON.0). If the PATN_SEL
bit is set, Port 0 has to be equal to the value pro-
grammed in the KBPATN register in order to gener-
ate the interrupt. If the PATN_SEL bit is clear, Port 0
has to be not equal to the value of the KBPATN in
order to generate the interrupt. The KBIF bit is set
when Port 0 matches the user-defined conditions in
all the 3 registers and generates an interrupt if the
Keyboard Interrupt Enable Bit (IEN1.1) is set (and
also EA is set). KBIF needs to be cleared in software.

In our example we connected a keyboard with 16
keys in an 8 (column) x 2 (row) matrix to the LPC932.
All eight return lines (columns) of the keyboard we
connected to port 0. For the two scan (row) lines we
used port pins P2.2 and P2.3.

Serial communication

Keyboard info (key n ‘pressed’ or ‘released’) is
transmitted to the outside world using the on-chip
serial port (UART) of the LPC932. In order to run this
application one has to connect this port, via a RS232
level shifter, to for instance the COMx port of a PC
and run a terminal emulation program like “Hyper
Terminal”, configured to 19200 Baud, 8 data bits and
one stop bit.
After reset or Power up, the micro will send a start-up
string to the serial port in order to check that the
communication works. If the following message is
displayed: “Keyboard Interrupt application”, it means
that the serial communication is okay. After this, at
each key press the message “Key n was pressed”
will be sent out and on a key release the message
“Key n was released” will be sent.

Oscillator

In our example, the micro’s internal RC oscillator
(7.3728 MHz ±2.5%) is used.

 P2.2 P2.3

K1.3

P2.2

K1.0 K2.0

K1.1

K1.2

K1.3

K1.5

K1.6

K1.7

K1.4

P89LPC932

K2.1

K2.2

K2.3

K2.4

K2.5

K2.6

K2.7

P0.0

P0.1

P0.2

P0.3

P0.4

P0.5

P0.6

P0.7

P2.3

Vcc

GND

RXD

TXD

Hyper
Terminal

Hyper
Terminal

RS232
89LPC932

 2002 Sep 14 3

Application notePhilips Semiconductors

Connecting a keyboard to the LPC932 microcontroller AN10184

SOFTWARE
Main loop
After setting the mode of operation for the port pins
and programming the keyboard registers, the UART
is initialised. Next, the two scan-lines (port pins P2.2
and P2.3 which select the 2 rows of the keyboard)
are pulled low and the LPC932 is forced into power
down mode.
If one of the 8 keys in a column is pressed a key-
board interrupt will be generated and the micro will
wake up from power down mode. Then the main pro-
gram is entered that contains an endless loop where
the micro just waits for a valid key press or release
detection. After that, it sends the key info out using
the internal UART and enters power down mode
again, waiting to wake up at the next keyboard inter-
rupt.

Keyboard Interrupt
When a key is pressed or released, an interrupt is
generated. Inside the Keyboard Interrupt routine the
keyboard interrupt enable bit is cleared and the de-
bounce Timer 1 is started. This is done in order to let
enough time (17.7ms) for the key to stabilize so that
we read a correct value from port 0.

Timer 1 (de-bounce timer) Interrupt
At the very beginning of the Timer 1 interrupt routine,
we inspect whether or not Port 0 is equal to 0xFF.
This indicates a key press or a key release.

If a key was pressed (P0 unequal to 0xFF) we first
set the PATN_SEL bit. This means that the next key-
board interrupt can only be generated if all keys are
released (P0 = 0xFF). Next, we check to which row
the key belongs by calling the function DefineRow.
After that, by reading the value of Port 0, we define to
which column the key belongs. Both, the row and
column numbers are used to read the key info from a
two dimensional array. Finally, we set a flag to inform
the main routine we had a valid key press.

If a key was released (P0 equal to 0xFF) we first
check if previously we had a valid key press. If that is
the case we set both the “Flag” and “release” bits to
inform the main routine a valid key release. After that
the PATN_SEL bit is cleared. This means that the
next keyboard interrupt again will be generated if P0
is unequal to 0xFF (key press).

At the end of the timer interrupt the keyboard inter-
rupt flag is cleared and the keyboard interrupt again
is enabled.

KB interrupt

Disable KB interrupt

Start debounce timer 1

END

KB interrupt

Disable KB interrupt

Start debounce timer 1

ENDmain

Init hardware
Send welcome string

Flag = 0
Go into standby mode

Y

N
Flag = 1?

Go into power down

Y N
key release?

release = 0
Send key release

Send key press

main

Init hardware
Send welcome string

Flag = 0
Go into standby mode

Y

N
Flag = 1?

Go into power down

Y N
key release?

release = 0
Send key release

Send key press

 2002 Sep 14 4

Application notePhilips Semiconductors

Connecting a keyboard to the LPC932 microcontroller AN10184

KEYBOARD.C LISTING

/***
* LPC932 Keyboard Interrupt demo program
* Sends the pressed key via UART at 19200kbps.
* Internal RC oscillator is used (7.3728MHz).
***/
#include "sfr932.h"

extern void ua_outchar(char c);
extern void UART_Init(void);
extern void PrintString(rom char *s);

rom char key_tbl[][] = {
{'1' ,'A' ,'6' ,'9' ,'7' ,'8' ,'4' ,'5' }, // row 0
{'2' ,'0' ,'E' ,'D' ,'B' ,'C' ,'3' ,'F' } // row 1
 };

rom char startup[] = "LPC9xx Keyboard application\n\r";
rom char press[] = " pressed\n\r";
rom char release[] = " released\n\r";

static unsigned char key,col,row,byte_read;

static bit flag = 0;
static bit rel = 0;
static bit valid_key = 0;

static void KEYB_Init(void)
{
// P0 (keypad columns) setting
 P0M1 = 0x00; // P0 is bidirectional
 P0 = 0xFF;

// P2 (keypad rows) setting
 P2M1 &= 0xF3; // P2_2 and P2_3 are push pull
 P2M2 |= 0x0C;
 P2_2 = 1;
 P2_3 = 1;

 KBMASK = 0xFF; // to generate an interrupt, P0
 KBPATN = 0xFF; // should be NOT equal to the
 // value from KBPATN(0xFF)
 EKBI = 1; // enable keyboard interrupt

 TL1 = 0; // Timer1 used to generate a de
 // bounce delay of 17.7ms
 TH1 = 0;
 TMOD = 0x10; // Timer 1 mode 1, 16 bit timer
 ET1 = 1; // enable Timer 1 interrupt
}

static void DefineColumn(void)
{
 valid_key = 1;
 switch (byte_read)
 {
 case 0xFE: col = 0; break;
 case 0xFD: col = 1; break;
 case 0xFB: col = 2; break;
 case 0xF7: col = 3; break;
 case 0xEF: col = 4; break;
 case 0xDF: col = 5; break;
 case 0xBF: col = 6; break;
 case 0x7F: col = 7; break;
 default: valid_key = 0; break;
 }
}

static void DefineRow(void)
{
 P2_3 = 1;
 if (P0 != 0xFF)
 {

T1 interrupt

Stop Timer 1

Reset keyboard interrupt flag KBIF = 0
enable keyboard interrupt EKBI = 1

NY

PATN_SEL = 1
Define row
Define column

P0 = 0xFF?

Valid key?

Y

N

read key table
flag = 1

Valid key?

Y

N

PATN_SEL = 0

Release = 1
flag = 1

END

T1 interrupt

Stop Timer 1

Reset keyboard interrupt flag KBIF = 0
enable keyboard interrupt EKBI = 1

NY

PATN_SEL = 1
Define row
Define column

P0 = 0xFF?

Valid key?

Y

N

read key table
flag = 1

Valid key?

Y

N

PATN_SEL = 0

Release = 1
flag = 1

END

 2002 Sep 14 5

Application notePhilips Semiconductors

Connecting a keyboard to the LPC932 microcontroller AN10184

 P2_3 = 0;
 row = 0;
 }
 else
 {
 P2_3 = 0;
 row = 1;
 }
}

interrupt(3) void Timer1_interrupt(void)
{
 TR1 = 0; // stop timer
 byte_read = P0; // save value of port 0
 if (byte_read != 0xFF) // If P0 |= FF, means
 { // that a key was pressed
 // if not, key release
 KBCON |= 2; // PATN_SEL = 1, next KB
 // int on P0 = 0xFF
 DefineRow();
 DefineColumn();
 if (valid_key)
 {
 key = key_tbl[row][col];
 flag = 1;
 }
 }
 else
 {
 if (valid_key)
 {
 rel = 1;
 flag = 1;
 }
 KBCON &= 0xFD; // PATN_SEL = 0, next inter
 // rupt if P0 != 0xFF
 }
 KBCON &= 0xFE; // reset keyb interrupt flag
 EKBI = 1;
}

interrupt(7) void Keyboard_Interrupt(void)
{
 EKBI = 0; // disable int.
 TR1 = 1; // start timer1
}

void main(void)
{
 TRIM = 0x30;
 KEYB_Init(); // initialise keyboard hardware
 UART_Init(); // initialise on-chip UART
 EA = 1; // enable interrupts

 PrintString(startup);

 P2_2 = 0; // row 0 low
 P2_3 = 0; // row 1 low

 PCON |= 2; // get into power down mode
 #pragma asm
 nop
 nop
 #pragma endasm
 while(1) // endless loop
 {
 if (flag)
 {
 if (!rel)
 {
 ua_outchar(key);
 PrintString(press);
 }
 else
 {
 rel = 0;
 ua_outchar(key);
 PrintString(release);

 }
 flag = 0;
 PCON |= 2; // go into power down mode
 #pragma asm
 nop
 nop
 #pragma endasm
 }
 }
}

UART.C LISTING

#include "sfr932.h"

rom char ascii[] = "0123456789ABCDEF";

void UART_Init(void)
{
 P1M1 &= 0xFC; /* TXD (P1.0) -> quasi bidir */

// BRG -> BRGR1,BRGR0 = (OSC / baudrate) - 16
// BRG -> BRGR1,BRGR0 = (7.373Mhz / 19200) - 16 = 0x170

 BRGR1 = 0x01;
 BRGR0 = 0x70;
 BRGCON = 3;
 AUXR1 |= 0x40; /* enable break detect reset */
 SCON = 0x52; /* mode 1, receiver enable */
}

void ua_outchar(char c)
{
 while (!TI) ;
 SBUF = c;
 TI = 0;
}

void PrintString(rom char *s)
{
 while (*s)
 {
 if (*s == '\n')
 ua_outchar('\r');
 ua_outchar(*s);

s++;
 }
}

REFERENCES
For further details please refer to the following publi-
cations:

o Datasheets:
www.semiconductors.philips.com

o Example Programs:
http://www.keil.com/download/c51.asp

 2002 Sep 14 6

Application notePhilips Semiconductors

Connecting a keyboard to the LPC932 microcontroller AN10184

Definitions
Short-form specification – The data in a short-form specification is extracted from a full data sheet with the same type number and title. For
detailed information, see the relevant datasheet or data handbook.

Limiting values definition – Limiting values given are in accordance with the Absolute Maximum Rating System (IEC134). Stress above one
or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these
or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for
extended periods may affect device reliability.

Application information – Applications that are described herein for any of these products are for illustrative purposes only. Philips Semicon-
ductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers
Life support – These products are not designed for use in life support appliances, devices or systems where malfunction of these products can
reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applica-
tions do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes – Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, stan-
dard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no
responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these
products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, un-
less otherwise specified.

 Koninklijke Philips Electronics Electronics N.V. 2002
All rights reserved. Printed in U.S.A

Date of release: 09-02
Document order number: 9397 750 10405

Contact information
For additional information please visit
http://www.semiconductors.philips.com. Fax: +31 40 27 24825

For sales offices addresses send e-mail to:
sales.addresses@www.semiconductors.philips.com

	INTRODUCTION
	HARDWARE
	SOFTWARE
	REFERENCES
	Definitions
	Disclaimers

